Dynamic Learning in Large Matching Markets

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Anand Kalvit, Assaf Zeevi

Abstract

We study a sequential matching problem faced by "large" centralized platforms where "jobs" must be matched to "workers" subject to uncertainty about worker skill proficiencies. Jobs arrive at discrete times with "job-types" observable upon arrival. To capture the "choice overload" phenomenon, we posit an unlimited supply of workers where each worker is characterized by a vector of attributes (aka "worker-types") drawn from an underlying population-level distribution. The distribution as well as mean payoffs for possible worker-job type-pairs are unobservables and the platform's goal is to sequentially match incoming jobs to workers in a way that maximizes its cumulative payoffs over the planning horizon. We establish lower bounds on the "regret" of any matching algorithm in this setting and propose a novel rate-optimal learning algorithm that adapts to aforementioned primitives "online." Our learning guarantees highlight a distinctive characteristic of the problem: achievable performance only has a "second-order" dependence on worker-type distributions; we believe this finding may be of interest more broadly.