SIREN: Shaping Representations for Detecting Out-of-Distribution Objects

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Xuefeng Du, Gabriel Gozum, Yifei Ming, Yixuan Li

Abstract

Detecting out-of-distribution (OOD) objects is indispensable for safely deploying object detectors in the wild. Although distance-based OOD detection methods have demonstrated promise in image classification, they remain largely unexplored in object-level OOD detection. This paper bridges the gap by proposing a distance-based framework for detecting OOD objects, which relies on the model-agnostic representation space and provides strong generality across different neural architectures. Our proposed framework SIREN contributes two novel components: (1) a representation learning component that uses a trainable loss function to shape the representations into a mixture of von Mises-Fisher (vMF) distributions on the unit hypersphere, and (2) a test-time OOD detection score leveraging the learned vMF distributions in a parametric or non-parametric way. SIREN achieves competitive performance on both the recent detection transformers and CNN-based models, improving the AUROC by a large margin compared to the previous best method. Code is publicly available at https://github.com/deeplearning-wisc/siren.