Lipschitz Bandits with Batched Feedback

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Yasong Feng, zengfeng Huang, Tianyu Wang

Abstract

In this paper, we study Lipschitz bandit problems with batched feedback, where the expected reward is Lipschitz and the reward observations are communicated to the player in batches. We introduce a novel landscape-aware algorithm, called Batched Lipschitz Narrowing (BLiN), that optimally solves this problem. Specifically, we show that for a $T$-step problem with Lipschitz reward of zooming dimension $d_z$, our algorithm achieves theoretically optimal (up to logarithmic factors) regret rate $\widetilde{\mathcal{O}}\left(T^{\frac{d_z+1}{d_z+2}}\right)$ using only $ \mathcal{O} \left( \log\log T\right) $ batches. We also provide complexity analysis for this problem. Our theoretical lower bound implies that $\Omega(\log\log T)$ batches are necessary for any algorithm to achieve the optimal regret. Thus, BLiN achieves optimal regret rate using minimal communication.