A Variant of Anderson Mixing with Minimal Memory Size

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Fuchao Wei, Chenglong Bao, Yang Liu, Guangwen Yang

Abstract

Anderson mixing (AM) is a useful method that can accelerate fixed-point iterations by exploring the information from historical iterations. Despite its numerical success in various applications, the memory requirement in AM remains a bottleneck when solving large-scale optimization problems in a resource-limited machine. To address this problem, we propose a novel variant of AM method, called Min-AM, by storing only one vector pair, that is the minimal memory size requirement in AM. Our method forms a symmetric approximation to the inverse Hessian matrix and is proved to be equivalent to the full-memory Type-I AM for solving strongly convex quadratic optimization. Moreover, for general nonlinear optimization problems, we establish the convergence properties of Min-AM under reasonable assumptions and show that the mixing parameters can be adaptively chosen by estimating the eigenvalues of the Hessian. Finally, we extend Min-AM to solve stochastic programming problems. Experimental results on logistic regression and network training problems validate the effectiveness of the proposed Min-AM.