Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, Christos Tzamos
Label Ranking (LR) is the supervised task of learning a sorting function that maps feature vectors $x \in \mathbb{R}^d$ to rankings $\sigma(x) \in \mathbb S_k$ over a finite set of $k$ labels. We focus on the fundamental case of learning linear sorting functions (LSFs) under Gaussian marginals: $x$ is sampled from the $d$-dimensional standard normal and the ground truth ranking $\sigma^\star(x)$ is the ordering induced by sorting the coordinates of the vector $W^\star x$, where $W^\star \in \mathbb{R}^{k \times d}$ is unknown. We consider learning LSFs in the presence of bounded noise: assuming that a noiseless example is of the form $(x, \sigma^\star(x))$, we observe $(x, \pi)$, where for any pair of elements $i \neq j$, the probability that the order of $i, j$ is different in $\pi$ than in $\sigma^\star(x)$ is at most $\eta < 1/2$. We design efficient non-proper and proper learning algorithms that learn hypotheses within normalized Kendall's Tau distance $\epsilon$ from the ground truth with $N= \widetilde{O}(d\log(k)/\epsilon)$ labeled examples and runtime $\mathrm{poly}(N, k)$. For the more challenging top-$r$ disagreement loss, we give an efficient proper learning algorithm that achieves $\epsilon$ top-$r$ disagreement with the ground truth with $N = \widetilde{O}(d k r /\epsilon)$ samples and $\mathrm{poly}(N)$ runtime.