The First Optimal Algorithm for Smooth and Strongly-Convex-Strongly-Concave Minimax Optimization

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Dmitry Kovalev, Alexander Gasnikov

Abstract

In this paper, we revisit the smooth and strongly-convex-strongly-concave minimax optimization problem. Zhang et al. (2021) and Ibrahim et al. (2020) established the lower bound $\Omega\left(\sqrt{\kappa_x\kappa_y} \log \frac{1}{\epsilon}\right)$ on the number of gradient evaluations required to find an ϵ-accurate solution, where κx and κy are condition numbers for the strong convexity and strong concavity assumptions. However, the existing state-of-the-art methods do not match this lower bound: algorithms of Lin et al. (2020) and Wang and Li (2020) have gradient evaluation complexity $\mathcal{O}\left(\sqrt{\kappa_x\kappa_y} \log^3 \frac{1}{\epsilon}\right)$ and $\mathcal{O}\left( \sqrt{\kappa_x\kappa_y}\log^3 (\kappa_x\kappa_y)\log\frac{1}{\epsilon}\right)$, respectively. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\sqrt{\kappa_x\kappa_y} \log \frac{1}{\epsilon}\right)$ gradient evaluation complexity. We design our algorithm in three steps: (i) we reformulate the original problem as a minimization problem via the pointwise conjugate function; (ii) we apply a specific variant of the proximal point algorithm to the reformulated problem; (iii) we compute the proximal operator inexactly using the optimal algorithm for operator norm reduction in monotone inclusions.