Homomorphic Matrix Completion

Xiao-Yang Liu, Zechu (Steven) Li, Xiaodong Wang

Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

In recommendation systems, global positioning, system identification and mobile social networks, it is a fundamental routine that a server completes a low-rank matrix from an observed subset of its entries. However, sending data to a cloud server raises up the data privacy concern due to eavesdropping attacks and the single-point failure problem, e.g., the Netflix prize contest was canceled after a privacy lawsuit. In this paper, we propose a homomorphic matrix completion algorithm for privacy-preserving data completion. First, we formulate a \textit{homomorphic matrix completion} problem where a server performs matrix completion on cyphertexts, and propose an encryption scheme that is fast and easy to implement. Secondly, we prove that the proposed scheme satisfies the \textit{homomorphism property} that decrypting the recovered matrix on cyphertexts will obtain the target complete matrix in plaintext. Thirdly, we prove that the proposed scheme satisfies an $(\epsilon, \delta)$-differential privacy property. While with similar level of privacy guarantee, we reduce the best-known error bound $O(\sqrt[10]{n_1^3n_2})$ to EXACT recovery at a price of more samples. Finally, on numerical data and real-world data, we show that both homomorphic nuclear-norm minimization and alternating minimization algorithms achieve accurate recoveries on cyphertexts, verifying the homomorphism property.