Augmenting Online Algorithms with $\varepsilon$-Accurate Predictions

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, Kevin Sun

Abstract

The growing body of work in learning-augmented online algorithms studies how online algorithms can be improved when given access to ML predictions about the future. Motivated by ML models that give a confidence parameter for their predictions, we study online algorithms with predictions that are $\epsilon$-accurate: namely, each prediction is correct with probability (at least) $\epsilon$, but can be arbitrarily inaccurate with the remaining probability. We show that even with predictions that are accurate with a small probability and arbitrarily inaccurate otherwise, we can dramatically outperform worst-case bounds for a range of classical online problems including caching, online set cover, and online facility location. Our main results are an $O(\log(1/\varepsilon))$-competitive algorithm for caching, and a simple $O(1/\varepsilon)$-competitive algorithm for a large family of covering problems, including set cover and facility location, with $\epsilon$-accurate predictions.