Differentially Private Covariance Revisited

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Wei Dong, Yuting Liang, Ke Yi

Abstract

In this paper, we present two new algorithms for covariance estimation under concentrated differential privacy (zCDP). The first algorithm achieves a Frobenius error of $\tilde{O}(d^{1/4}\sqrt{\mathrm{tr}}/\sqrt{n} + \sqrt{d}/n)$, where $\mathrm{tr}$ is the trace of the covariance matrix. By taking $\mathrm{tr}=1$, this also implies a worst-case error bound of $\tilde{O}(d^{1/4}/\sqrt{n})$, which improves the standard Gaussian mechanism's $\tilde{O}(d/n)$ for the regime $d>\widetilde{\Omega}(n^{2/3})$. Our second algorithm offers a tail-sensitive bound that could be much better on skewed data. The corresponding algorithms are also simple and efficient. Experimental results show that they offer significant improvements over prior work.