Fast Active Set Methods for Online Spike Inference from Calcium Imaging

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews Supplemental

Authors

Johannes Friedrich, Liam Paninski

Abstract

Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse nonnegative deconvolution problem. Importantly, the algorithm progresses through each time series sequentially from beginning to end, thus enabling real-time online spike inference during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. The algorithm enables real-time simultaneous deconvolution of $O(10^5)$ traces of whole-brain zebrafish imaging data on a laptop.