Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Sebastian Bitzer, Stefan Kiebel
In simple perceptual decisions the brain has to identify a stimulus based on noisy sensory samples from the stimulus. Basic statistical considerations state that the reliability of the stimulus information, i.e., the amount of noise in the samples, should be taken into account when the decision is made. However, for perceptual decision making experiments it has been questioned whether the brain indeed uses the reliability for making decisions when confronted with unpredictable changes in stimulus reliability. We here show that even the basic drift diffusion model, which has frequently been used to explain experimental findings in perceptual decision making, implicitly relies on estimates of stimulus reliability. We then show that only those variants of the drift diffusion model which allow stimulus-specific reliabilities are consistent with neurophysiological findings. Our analysis suggests that the brain estimates the reliability of the stimulus on a short time scale of at most a few hundred milliseconds.