Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck
Tractable learning aims to learn probabilistic models where inference is guaranteed to be efficient. However, the particular class of queries that is tractable depends on the model and underlying representation. Usually this class is MPE or conditional probabilities $\Pr(\xs|\ys)$ for joint assignments~$\xs,\ys$. We propose a tractable learner that guarantees efficient inference for a broader class of queries. It simultaneously learns a Markov network and its tractable circuit representation, in order to guarantee and measure tractability. Our approach differs from earlier work by using Sentential Decision Diagrams (SDD) as the tractable language instead of Arithmetic Circuits (AC). SDDs have desirable properties, which more general representations such as ACs lack, that enable basic primitives for Boolean circuit compilation. This allows us to support a broader class of complex probability queries, including counting, threshold, and parity, in polytime.