Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoffbetween computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporateprior information such as sparsity or structure. To address this problem, we presenta new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, therebyallowing users to incorporate prior knowledge via standard techniques such asL 1 regularization. Many existing spectral methods are special cases of this newframework, using linear regression as the supervised learner. We demonstrate theeffectiveness of our framework by showing examples where nonlinear regressionor lasso let us learn better state representations than plain linear regression does;the correctness of these instances follows directly from our general analysis.