Fast Convergence of Regularized Learning in Games

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental


Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire


We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of Rakhlin and Shridharan~\cite{Rakhlin2013} and Daskalakis et al.~\cite{Daskalakis2014}, who only analyzed two-player zero-sum games for specific algorithms.