Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Michael Shvartsman, Vaibhav Srivastava, Jonathan D. Cohen
The dynamics of simple decisions are well understood and modeled as a class of random walk models (e.g. Laming, 1968; Ratcliff, 1978; Busemeyer and Townsend, 1993; Usher and McClelland, 2001; Bogacz et al., 2006). However, most real-life decisions include a rich and dynamically-changing influence of additional information we call context. In this work, we describe a computational theory of decision making under dynamically shifting context. We show how the model generalizes the dominant existing model of fixed-context decision making (Ratcliff, 1978) and can be built up from a weighted combination of fixed-context decisions evolving simultaneously. We also show how the model generalizes re- cent work on the control of attention in the Flanker task (Yu et al., 2009). Finally, we show how the model recovers qualitative data patterns in another task of longstanding psychological interest, the AX Continuous Performance Test (Servan-Schreiber et al., 1996), using the same model parameters.