Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton
Syntactic constituency parsing is a fundamental problem in naturallanguage processing which has been the subject of intensive researchand engineering for decades. As a result, the most accurate parsersare domain specific, complex, and inefficient. In this paper we showthat the domain agnostic attention-enhanced sequence-to-sequence modelachieves state-of-the-art results on the most widely used syntacticconstituency parsing dataset, when trained on a large synthetic corpusthat was annotated using existing parsers. It also matches theperformance of standard parsers when trained on a smallhuman-annotated dataset, which shows that this model is highlydata-efficient, in contrast to sequence-to-sequence models without theattention mechanism. Our parser is also fast, processing over ahundred sentences per second with an unoptimized CPU implementation.