Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)
Nan Du, Yichen Wang, Niao He, Jimeng Sun, Le Song
By making personalized suggestions, a recommender system is playing a crucial role in improving the engagement of users in modern web-services. However, most recommendation algorithms do not explicitly take into account the temporal behavior and the recurrent activities of users. Two central but less explored questions are how to recommend the most desirable item \emph{at the right moment}, and how to predict \emph{the next returning time} of a user to a service. To address these questions, we propose a novel framework which connects self-exciting point processes and low-rank models to capture the recurrent temporal patterns in a large collection of user-item consumption pairs. We show that the parameters of the model can be estimated via a convex optimization, and furthermore, we develop an efficient algorithm that maintains $O(1 / \epsilon)$ convergence rate, scales up to problems with millions of user-item pairs and thousands of millions of temporal events. Compared to other state-of-the-arts in both synthetic and real datasets, our model achieves superb predictive performance in the two time-sensitive recommendation questions. Finally, we point out that our formulation can incorporate other extra context information of users, such as profile, textual and spatial features.