Blossom Tree Graphical Models

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Zhe Liu, John Lafferty

Abstract

We combine the ideas behind trees and Gaussian graphical models to form a new nonparametric family of graphical models. Our approach is to attach nonparanormal blossoms", with arbitrary graphs, to a collection of nonparametric trees. The tree edges are chosen to connect variables that most violate joint Gaussianity. The non-tree edges are partitioned into disjoint groups, and assigned to tree nodes using a nonparametric partial correlation statistic. A nonparanormal blossom is then "grown" for each group using established methods based on the graphical lasso. The result is a factorization with respect to the union of the tree branches and blossoms, defining a high-dimensional joint density that can be efficiently estimated and evaluated on test points. Theoretical properties and experiments with simulated and real data demonstrate the effectiveness of blossom trees."