DFacTo: Distributed Factorization of Tensors

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Joon Hee Choi, S. V. N. Vishwanathan

Abstract

We present a technique for significantly speeding up Alternating Least Squares (ALS) and Gradient Descent (GD), two widely used algorithms for tensor factorization. By exploiting properties of the Khatri-Rao product, we show how to efficiently address a computationally challenging sub-step of both algorithms. Our algorithm, DFacTo, only requires two matrix-vector products and is easy to parallelize. DFacTo is not only scalable but also on average 4 to 10 times faster than competing algorithms on a variety of datasets. For instance, DFacTo only takes 480 seconds on 4 machines to perform one iteration of the ALS algorithm and 1,143 seconds to perform one iteration of the GD algorithm on a 6.5 million x 2.5 million x 1.5 million dimensional tensor with 1.2 billion non-zero entries.