Optimal kernel choice for large-scale two-sample tests

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper Supplemental

Authors

Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu, Bharath K. Sriperumbudur

Abstract

Abstract Given samples from distributions $p$ and $q$, a two-sample test determines whether to reject the null hypothesis that $p=q$, based on the value of a test statistic measuring the distance between the samples. One choice of test statistic is the maximum mean discrepancy (MMD), which is a distance between embeddings of the probability distributions in a reproducing kernel Hilbert space. The kernel used in obtaining these embeddings is thus critical in ensuring the test has high power, and correctly distinguishes unlike distributions with high probability. A means of parameter selection for the two-sample test based on the MMD is proposed. For a given test level (an upper bound on the probability of making a Type I error), the kernel is chosen so as to maximize the test power, and minimize the probability of making a Type II error. The test statistic, test threshold, and optimization over the kernel parameters are obtained with cost linear in the sample size. These properties make the kernel selection and test procedures suited to data streams, where the observations cannot all be stored in memory. In experiments, the new kernel selection approach yields a more powerful test than earlier kernel selection heuristics.