Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper

Authors

Joni Pajarinen, Jaakko Peltonen

Abstract

Applications such as robot control and wireless communication require planning under uncertainty. Partially observable Markov decision processes (POMDPs) plan policies for single agents under uncertainty and their decentralized versions (DEC-POMDPs) find a policy for multiple agents. The policy in infinite-horizon POMDP and DEC-POMDP problems has been represented as finite state controllers (FSCs). We introduce a novel class of periodic FSCs, composed of layers connected only to the previous and next layer. Our periodic FSC method finds a deterministic finite-horizon policy and converts it to an initial periodic infinite-horizon policy. This policy is optimized by a new infinite-horizon algorithm to yield deterministic periodic policies, and by a new expectation maximization algorithm to yield stochastic periodic policies. Our method yields better results than earlier planning methods and can compute larger solutions than with regular FSCs.