Layered image motion with explicit occlusions, temporal consistency, and depth ordering

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper Supplemental

Authors

Deqing Sun, Erik Sudderth, Michael Black

Abstract

Layered models are a powerful way of describing natural scenes containing smooth surfaces that may overlap and occlude each other. For image motion estimation, such models have a long history but have not achieved the wide use or accuracy of non-layered methods. We present a new probabilistic model of optical flow in layers that addresses many of the shortcomings of previous approaches. In particular, we define a probabilistic graphical model that explicitly captures: 1) occlusions and disocclusions; 2) depth ordering of the layers; 3) temporal consistency of the layer segmentation. Additionally the optical flow in each layer is modeled by a combination of a parametric model and a smooth deviation based on an MRF with a robust spatial prior; the resulting model allows roughness in layers. Finally, a key contribution is the formulation of the layers using an image-dependent hidden field prior based on recent models for static scene segmentation. The method achieves state-of-the-art results on the Middlebury benchmark and produces meaningful scene segmentations as well as detected occlusion regions.