CUR from a Sparse Optimization Viewpoint

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper

Authors

Jacob Bien, Ya Xu, Michael W. Mahoney

Abstract

The CUR decomposition provides an approximation of a matrix X that has low reconstruction error and that is sparse in the sense that the resulting approximation lies in the span of only a few columns of X. In this regard, it appears to be similar to many sparse PCA methods. However, CUR takes a randomized algorithmic approach whereas most sparse PCA methods are framed as convex optimization problems. In this paper, we try to understand CUR from a sparse optimization viewpoint. In particular, we show that CUR is implicitly optimizing a sparse regression objective and, furthermore, cannot be directly cast as a sparse PCA method. We observe that the sparsity attained by CUR possesses an interesting structure, which leads us to formulate a sparse PCA method that achieves a CUR-like sparsity.