Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)
Sergey Levine, Zoran Popovic, Vladlen Koltun
The goal of inverse reinforcement learning is to find a reward function for a Markov decision process, given example traces from its optimal policy. Current IRL techniques generally rely on user-supplied features that form a concise basis for the reward. We present an algorithm that instead constructs reward features from a large collection of component features, by building logical conjunctions of those component features that are relevant to the example policy. Given example traces, the algorithm returns a reward function as well as the constructed features. The reward function can be used to recover a full, deterministic, stationary policy, and the features can be used to transplant the reward function into any novel environment on which the component features are well defined.