Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)
Anand Singh, Renaud Jolivet, Pierre Magistretti, Bruno Weber
Sodium entry during an action potential determines the energy efficiency of a neuron. The classic Hodgkin-Huxley model of action potential generation is notoriously inefficient in that regard with about 4 times more charges flowing through the membrane than the theoretical minimum required to achieve the observed depolarization. Yet, recent experimental results show that mammalian neurons are close to the optimal metabolic efficiency and that the dynamics of their voltage-gated channels is significantly different than the one exhibited by the classic Hodgkin-Huxley model during the action potential. Nevertheless, the original Hodgkin-Huxley model is still widely used and rarely to model the squid giant axon from which it was extracted. Here, we introduce a novel family of Hodgkin-Huxley models that correctly account for sodium entry, action potential width and whose voltage-gated channels display a dynamics very similar to the most recent experimental observations in mammalian neurons. We speak here about a family of models because the model is parameterized by a unique parameter the variations of which allow to reproduce the entire range of experimental observations from cortical pyramidal neurons to Purkinje cells, yielding a very economical framework to model a wide range of different central neurons. The present paper demonstrates the performances and discuss the properties of this new family of models.