Bootstrapping from Game Tree Search

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper

Authors

Joel Veness, David Silver, Alan Blair, William Uther

Abstract

In this paper we introduce a new algorithm for updating the parameters of a heuristic evaluation function, by updating the heuristic towards the values computed by an alpha-beta search. Our algorithm differs from previous approaches to learning from search, such as Samuels checkers player and the TD-Leaf algorithm, in two key ways. First, we update all nodes in the search tree, rather than a single node. Second, we use the outcome of a deep search, instead of the outcome of a subsequent search, as the training signal for the evaluation function. We implemented our algorithm in a chess program Meep, using a linear heuristic function. After initialising its weight vector to small random values, Meep was able to learn high quality weights from self-play alone. When tested online against human opponents, Meep played at a master level, the best performance of any chess program with a heuristic learned entirely from self-play.