Near-optimal Regret Bounds for Reinforcement Learning

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper

Authors

Peter Auer, Thomas Jaksch, Ronald Ortner

Abstract

For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider the total regret of a learning algorithm with respect to an optimal policy. In order to describe the transition structure of an MDP we propose a new parameter: An MDP has diameter D if for any pair of states s1,s2 there is a policy which moves from s1 to s2 in at most D steps (on average). We present a reinforcement learning algorithm with total regret O(DSAT) after T steps for any unknown MDP with S states, A actions per state, and diameter D. This bound holds with high probability. We also present a corresponding lower bound of Omega(DSAT) on the total regret of any learning algorithm. Both bounds demonstrate the utility of the diameter as structural parameter of the MDP.