One-Pass Boosting

Part of Advances in Neural Information Processing Systems 20 (NIPS 2007)

Bibtex Metadata Paper Supplemental

Authors

Zafer Barutcuoglu, Phil Long, Rocco Servedio

Abstract

This paper studies boosting algorithms that make a single pass over a set of base classi(cid:2)ers. We (cid:2)rst analyze a one-pass algorithm in the setting of boosting with diverse base classi(cid:2)ers. Our guarantee is the same as the best proved for any boosting algo- rithm, but our one-pass algorithm is much faster than previous approaches. We next exhibit a random source of examples for which a (cid:147)picky(cid:148) variant of Ad- aBoost that skips poor base classi(cid:2)ers can outperform the standard AdaBoost al- gorithm, which uses every base classi(cid:2)er, by an exponential factor. Experiments with Reuters and synthetic data show that one-pass boosting can sub- stantially improve on the accuracy of Naive Bayes, and that picky boosting can sometimes lead to a further improvement in accuracy.