Policy-Gradient Methods for Planning

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper

Authors

Douglas Aberdeen

Abstract

Probabilistic temporal planning attempts to find good policies for acting in domains with concurrent durative tasks, multiple uncertain outcomes, and limited resources. These domains are typically modelled as Markov decision problems and solved using dynamic programming methods. This paper demonstrates the application of reinforcement learning — in the form of a policy-gradient method — to these domains. Our emphasis is large domains that are infeasible for dynamic programming. Our ap- proach is to construct simple policies, or agents, for each planning task. The result is a general probabilistic temporal planner, named the Factored Policy-Gradient Planner (FPG-Planner), which can handle hundreds of tasks, optimising for probability of success, duration, and resource use.