Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statistical models that generically produce power-laws, augmenting stan- dard generative models with an adaptor that produces the appropriate pattern of token frequencies. We show that taking a particular stochastic process – the Pitman-Yor process – as an adaptor justifies the appearance of type frequencies in formal analyses of natural language, and improves the performance of a model for unsupervised learning of morphology.