We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely(cid:173) held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of per(cid:173) formance as the training set size is increased, one in which each algorithm does better. This stems from the observation- which is borne out in repeated experiments- that while discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster.