Feedback connections are required so that the teacher signal on the output neurons can modify weights during supervised learning. Relaxation methods are needed for learning static patterns with full-time feedback connections. Feedback network learning techniques have not achieved wide popularity because of the still greater computational efficiency of back-propagation. We show by simulation that relaxation networks of the kind we are implementing in VLSI are capable of learning large problems just like back-propagation networks. A microchip incorporates deterministic mean-field theory learning as well as stochastic Boltzmann learning. A multiple-chip electronic system implementing these networks will make high-speed parallel learning in them feasible in the future.