Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)
Akash Kumar, Yuxin Chen, Adish Singla
We study the sample complexity of teaching, termed as "teaching dimension" (TD) in the literature, for the learning-with-equivalence-queries (LwEQ) paradigm. More concretely, we consider a learner who asks equivalence queries (i.e., "is the queried hypothesis the target hypothesis?"), and a teacher responds either "yes" or "no" along with a counterexample to the queried hypothesis. This learning paradigm has been extensively studied when the learner receives worst-case or random counterexamples; in this paper, we consider the optimal teacher who picks best-case counterexamples to teach the target hypothesis within a hypothesis class. For this optimal teacher, we introduce LwEQ-TD, a notion of TD capturing the teaching complexity (i.e., the number of queries made) in this paradigm. We show that a significant reduction in queries can be achieved with best-case counterexamples, in contrast to worst-case or random counterexamples, for different hypothesis classes. Furthermore, we establish new connections of LwEQ-TD to the well-studied notions of TD in the learning-from-samples paradigm.