Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

*Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer*

We give an $(\varepsilon,\delta)$-differentially private algorithm for the Multi-Armed Bandit (MAB) problem in the shuffle model with a distribution-dependent regret of $O\left(\left(\sum_{a:\Delta_a>0}\frac{\log T}{\Delta_a}\right)+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, and a distribution-independent regret of $O\left(\sqrt{kT\log T}+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, where $T$ is the number of rounds, $\Delta_a$ is the suboptimality gap of the action $a$, and $k$ is the total number of actions. Our upper bound almost matches the regret of the best known algorithms for the centralized model, and significantly outperforms the best known algorithm in the local model.

Do not remove: This comment is monitored to verify that the site is working properly