Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning

Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

Bibtex Paper Reviews And Public Comment » Supplemental

Authors

Guiliang Liu, Xiangyu Sun, Oliver Schulte, Pascal Poupart

Abstract

Interpreting Deep Reinforcement Learning (DRL) models is important to enhance trust and comply with transparency regulations. Existing methods typically explain a DRL model by visualizing the importance of low-level input features with super-pixels, attentions, or saliency maps. Our approach provides an interpretation based on high-level latent object features derived from a disentangled representation. We propose a Represent And Mimic (RAMi) framework for training 1) an identifiable latent representation to capture the independent factors of variation for the objects and 2) a mimic tree that extracts the causal impact of the latent features on DRL action values. To jointly optimize both the fidelity and the simplicity of a mimic tree, we derive a novel Minimum Description Length (MDL) objective based on the Information Bottleneck (IB) principle. Based on this objective, we describe a Monte Carlo Regression Tree Search (MCRTS) algorithm that explores different splits to find the IB-optimal mimic tree. Experiments show that our mimic tree achieves strong approximation performance with significantly fewer nodes than baseline models. We demonstrate the interpretability of our mimic tree by showing latent traversals, decision rules, causal impacts, and human evaluation results.