Adversarial Reweighting for Partial Domain Adaptation

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper Supplemental

Bibtek download is not available in the pre-proceeding


Authors

Xiang Gu, Xi Yu, yan yang, Jian Sun, Zongben Xu

Abstract

Partial domain adaptation (PDA) has gained much attention due to its practical setting. The current PDA methods usually adapt the feature extractor by aligning the target and reweighted source domain distributions. In this paper, we experimentally find that the feature adaptation by the reweighted distribution alignment in some state-of-the-art PDA methods is not robust to the ``noisy'' weights of source domain data, leading to negative domain transfer on some challenging benchmarks. To tackle the challenge of negative domain transfer, we propose a novel Adversarial Reweighting (AR) approach that adversarially learns the weights of source domain data to align the source and target domain distributions, and the transferable deep recognition network is learned on the reweighted source domain data. Based on this idea, we propose a training algorithm that alternately updates the parameters of the network and optimizes the weights of source domain data. Extensive experiments show that our method achieves state-of-the-art results on the benchmarks of ImageNet-Caltech, Office-Home, VisDA-2017, and DomainNet. Ablation studies also confirm the effectiveness of our approach.