To The Point: Correspondence-driven monocular 3D category reconstruction

Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

Bibtex Paper Reviews And Public Comment » Supplemental

Authors

Filippos Kokkinos, Iasonas Kokkinos

Abstract

We present To The Point (TTP), a method for reconstructing 3D objects from a single image using 2D to 3D correspondences given only foreground masks, a category specific template and optionally sparse keypoints for supervision. We recover a 3D shape from a 2D image by first regressing the 2D positions corresponding to the 3D template vertices and then jointly estimating a rigid camera transform and non-rigid template deformation that optimally explain the 2D positions through the 3D shape projection. By relying on correspondences we use a simple per-sample optimization problem to replace CNN-based regression of camera pose and non-rigid deformation and thereby obtain substantially more accurate 3D reconstructions. We treat this optimization as a differentiable layer and train the whole system in an end-to-end manner using geometry-driven losses. We report systematic quantitative improvements on multiple categories and provide qualitative results comprising diverse shape, poses and texture prediction examples.