Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper Supplemental

Bibtek download is not available in the pre-proceeding


Authors

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, Michael Brudno

Abstract

Large pretrained language models (LMs) like BERT have improved performance in many disparate natural language processing (NLP) tasks. However, fine tuning such models requires a large number of training examples for each target task. Simultaneously, many realistic NLP problems are "few shot", without a sufficiently large training set. In this work, we propose a novel conditional neural process-based approach for few-shot text classification that learns to transfer from other diverse tasks with rich annotation. Our key idea is to represent each task using gradient information from a base model and to train an adaptation network that modulates a text classifier conditioned on the task representation. While previous task-aware few-shot learners represent tasks by input encoding, our novel task representation is more powerful, as the gradient captures input-output relationships of a task. Experimental results show that our approach outperforms traditional fine-tuning, sequential transfer learning, and state-of-the-art meta learning approaches on a collection of diverse few-shot tasks. We further conducted analysis and ablations to justify our design choices.