Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)
Janardhan Kulkarni, Yin Tat Lee, Daogao Liu
We study the differentially private Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problems for non-smooth convex functions. We get a (nearly) optimal bound on the excess empirical risk for ERM with O(N3/2d1/8+N2d) gradient queries, which is achieved with the help of subsampling and smoothing the function via convolution. Combining this result with the iterative localization technique of Feldman et al. \cite{fkt20}, we achieve the optimal excess population loss for the SCO problem with O(min gradient queries.Our work makes progress towards resolving a question raised by Bassily et al. \cite{bfgt20}, giving first algorithms for private SCO with subquadratic steps. In a concurrent work, Asi et al. \cite{afkt21} gave other algorithms for private ERM and SCO with subquadratic steps.