A Topological Filter for Learning with Label Noise

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Pengxiang Wu, Songzhu Zheng, Mayank Goswami, Dimitris Metaxas, Chao Chen

Abstract

<p>Noisy labels can impair the performance of deep neural networks. To tackle this problem, in this paper, we propose a new method for filtering label noise. Unlike most existing methods relying on the posterior probability of a noisy classifier, we focus on the much richer spatial behavior of data in the latent representational space. By leveraging the high-order topological information of data, we are able to collect most of the clean data and train a high-quality model. Theoretically we prove that this topological approach is guaranteed to collect the clean data with high probability. Empirical results show that our method outperforms the state-of-the-arts and is robust to a broad spectrum of noise types and levels. </p>