Learning Agent Representations for Ice Hockey

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Guiliang Liu, Oliver Schulte, Pascal Poupart, Mike Rudd, Mehrsan Javan

Abstract

<p>Team sports is a new application domain for agent modeling with high real-world impact. A fundamental challenge for modeling professional players is their large number (over 1K), which includes many bench players with sparse participation in a game season. The diversity and sparsity of player observations make it difficult to extend previous agent representation models to the sports domain. This paper develops a new approach for agent representations, based on a Markov game model, that is tailored towards applications in professional ice hockey. We introduce a novel player representation via player generation framework where a variational encoder embeds player information with latent variables. The encoder learns a context-specific shared prior to induce a shrinkage effect for the posterior player representations, allowing it to share statistical information across players with different participations. To model the play dynamics in sequential sports data, we design a Variational Recurrent Ladder Agent Encoder (VaRLAE). It learns a contextualized player representation with a hierarchy of latent variables that effectively prevents latent posterior collapse. We validate our player representations in major sports analytics tasks. Our experimental results, based on a large dataset that contains over 4.5M events, show state-of-the-art performance for our VarLAE on facilitating 1) identifying the acting player, 2) estimating expected goals, and 3) predicting the final score difference.</p>