f-Divergence Variational Inference

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental




This paper introduces the f-divergence variational inference (f-VI) that generalizes variational inference to all f-divergences. Initiated from minimizing a crafty surrogate f-divergence that shares the statistical consistency with the f-divergence, the f-VI framework not only unifies a number of existing VI methods, e.g. KullbackÔÇôLeibler VI, Renyi's alpha-VI, and chi-VI, but offers a standardized toolkit for VI subject to arbitrary divergences from f-divergence family. A general f-variational bound is derived and provides a sandwich estimate of marginal likelihood (or evidence). The development of the f-VI unfolds with a stochastic optimization scheme that utilizes the reparameterization trick, importance weighting and Monte Carlo approximation; a mean-field approximation scheme that generalizes the well-known coordinate ascent variational inference (CAVI) is also proposed for f-VI. Empirical examples, including variational autoencoders and Bayesian neural networks, are provided to demonstrate the effectiveness and the wide applicability of f-VI.