A Bandit Learning Algorithm and Applications to Auction Design

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Kim Thang Nguyen

Abstract

We consider online bandit learning in which at every time step, an algorithm has to make a decision and then observe only its reward. The goal is to design efficient (polynomial-time) algorithms that achieve a total reward approximately close to that of the best fixed decision in hindsight. In this paper, we introduce a new notion of $(\lambda,\mu)$-concave functions and present a bandit learning algorithm that achieves a performance guarantee which is characterized as a function of the concavity parameters $\lambda$ and $\mu$. The algorithm is based on the mirror descent algorithm in which the update directions follow the gradient of the multilinear extensions of the reward functions. The regret bound induced by our algorithm is $\widetilde{O}(\sqrt{T})$ which is nearly optimal. We apply our algorithm to auction design, specifically to welfare maximization, revenue maximization, and no-envy learning in auctions. In welfare maximization, we show that a version of fictitious play in smooth auctions guarantees a competitive regret bound which is determined by the smooth parameters. In revenue maximization, we consider the simultaneous second-price auctions with reserve prices in multi-parameter environments. We give a bandit algorithm which achieves the total revenue at least $1/2$ times that of the best fixed reserve prices in hindsight. In no-envy learning, we study the bandit item selection problem where the player valuation is submodular and provide an efficient $1/2$-approximation no-envy algorithm.