On the Optimal Weighted $\ell_2$ Regularization in Overparameterized Linear Regression

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Denny Wu, Ji Xu


We consider the linear model $\vy=\vX\vbeta_{\star}+\vepsilon$ with $\vX\in \mathbb{R}^{n\times p}$ in the overparameterized regime $p>n$. We estimate $\vbeta_{\star}$ via generalized (weighted) ridge regression: $\hat{\vbeta}_{\lambda}=\left(\vX^{\t}\vX+\lambda\vSigma_w\right)^{\dagger}\vX^{\t}\vy$, where $\vSigma_w$ is the weighting matrix. Assuming a random effects model with general data covariance $\vSigma_x$ and anisotropic prior on the true coefficients $\vbeta_{\star}$, i.e., $\bbE\vbeta_{\star}\vbeta_{\star}^{\t}=\vSigma_\beta$, we provide an exact characterization of the prediction risk $\mathbb{E}(y-\vx^{\t}\hat{\vbeta}_{\lambda})^2$ in the proportional asymptotic limit $p/n\rightarrow \gamma \in (1,\infty)$. Our general setup leads to a number of interesting findings. We outline precise conditions that decide the sign of the optimal setting $\lambda_{\opt}$ for the ridge parameter $\lambda$ and confirm the implicit $\ell_2$ regularization effect of overparameterization, which theoretically justifies the surprising empirical observation that $\lambda_{\opt}$ can be \textit{negative} in the overparameterized regime. We also characterize the double descent phenomenon for principal component regression (PCR) when $\vX$ and $\vbeta_{\star}$ are both anisotropic. Finally, we determine the optimal weighting matrix $\vSigma_w$ for both the ridgeless ($\lambda\to 0$) and optimally regularized ($\lambda = \lambda_{\opt}$) case, and demonstrate the advantage of the weighted objective over standard ridge regression and PCR.