Inference for Batched Bandits

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »Supplemental »

Authors

Kelly Zhang, Lucas Janson, Susan Murphy

Abstract

As bandit algorithms are increasingly utilized in scientific studies and industrial applications, there is an associated increasing need for reliable inference methods based on the resulting adaptively-collected data. In this work, we develop methods for inference on data collected in batches using a bandit algorithm. We prove that the bandit arm selection probabilities cannot generally be assumed to concentrate. Non-concentration of the arm selection probabilities makes inference on adaptively-collected data challenging because classical statistical inference approaches, such as using asymptotic normality or the bootstrap, can have inflated Type-1 error and confidence intervals with below-nominal coverage probabilities even asymptotically. In response we develop the Batched Ordinary Least Squares estimator (BOLS) that we prove is (1) asymptotically normal on data collected from both multi-arm and contextual bandits and (2) robust to non-stationarity in the baseline reward and thus leads to reliable Type-1 error control and accurate confidence intervals.