A Boolean Task Algebra for Reinforcement Learning

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Geraud Nangue Tasse, Steven James, Benjamin Rosman


The ability to compose learned skills to solve new tasks is an important property for lifelong-learning agents. In this work we formalise the logical composition of tasks as a Boolean algebra. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with no further learning. We prove that by composing these value functions in specific ways, we immediately recover the optimal policies for all tasks expressible under the Boolean algebra. We verify our approach in two domains---including a high-dimensional video game environment requiring function approximation---where an agent first learns a set of base skills, and then composes them to solve a super-exponential number of new tasks.