Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Han Zhao, Jianfeng Chi, Yuan Tian, Geoffrey J. Gordon


<p>Crowdsourced data used in machine learning services might carry sensitive information about attributes that users do not want to share. Various methods have been proposed to minimize the potential information leakage of sensitive attributes while maximizing the task accuracy. However, little is known about the theory behind these methods. In light of this gap, we develop a novel theoretical framework for attribute obfuscation. Under our framework, we propose a minimax optimization formulation to protect the given attribute and analyze its inference guarantees against worst-case adversaries. Meanwhile, there is a tension between minimizing information leakage and maximizing task accuracy. To understand this, we prove an information-theoretic lower bound to precisely characterize the fundamental trade-off between accuracy and information leakage. We conduct experiments on two real-world datasets to corroborate the inference guarantees and validate the inherent trade-offs therein. Our results indicate that, among several alternatives, the adversarial learning approach achieves the best trade-off in terms of attribute obfuscation and accuracy maximization.</p>