UCSG-NET- Unsupervised Discovering of Constructive Solid Geometry Tree

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Kacper Kania, Maciej Zieba, Tomasz Kajdanowicz

Abstract

<p>Signed distance field (SDF) is a prominent implicit representation of 3D meshes. Methods that are based on such representation achieved state-of-the-art 3D shape reconstruction quality. However, these methods struggle to reconstruct non-convex shapes. One remedy is to incorporate a constructive solid geometry framework (CSG) that represents a shape as a decomposition into primitives. It allows to embody a 3D shape of high complexity and non-convexity with a simple tree representation of Boolean operations. Nevertheless, existing approaches are supervised and require the entire CSG parse tree that is given upfront during the training process. On the contrary, we propose a model that extracts a CSG parse tree without any supervision - UCSG-Net. Our model predicts parameters of primitives and binarizes their SDF representation through differentiable indicator function. It is achieved jointly with discovering the structure of a Boolean operators tree. The model selects dynamically which operator combination over primitives leads to the reconstruction of high fidelity. We evaluate our method on 2D and 3D autoencoding tasks. We show that the predicted parse tree representation is interpretable and can be used in CAD software.</p>