Estimating decision tree learnability with polylogarithmic sample complexity

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan

Abstract

We show that top-down decision tree learning heuristics (such as ID3, C4.5, and CART) are amenable to highly efficient {\sl learnability estimation}: for monotone target functions, the error of the decision tree hypothesis constructed by these heuristics can be estimated with {\sl polylogarithmically} many labeled examples, exponentially smaller than the number necessary to run these heuristics, and indeed, exponentially smaller than information-theoretic minimum required to learn a good decision tree. This adds to a small but growing list of fundamental learning algorithms that have been shown to be amenable to learnability estimation. En route to this result, we design and analyze sample-efficient {\sl minibatch} versions of top-down decision tree learning heuristics and show that they achieve the same provable guarantees as the full-batch versions. We further give ``active local'' versions of these heuristics: given a test point $x^\star$, we show how the label $T(x^\star)$ of the decision tree hypothesis $T$ can be computed with polylogarithmically many labeled examples, exponentially smaller than the number necessary to learn~$T$.