Efficient Low Rank Gaussian Variational Inference for Neural Networks

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Marcin Tomczak, Siddharth Swaroop, Richard Turner


<p>Bayesian neural networks are enjoying a renaissance driven in part by recent advances in variational inference (VI). The most common form of VI employs a fully factorized or mean-field distribution, but this is known to suffer from several pathologies, especially as we expect posterior distributions with highly correlated parameters. Current algorithms that capture these correlations with a Gaussian approximating family are difficult to scale to large models due to computational costs and high variance of gradient updates. By using a new form of the reparametrization trick, we derive a computationally efficient algorithm for performing VI with a Gaussian family with a low-rank plus diagonal covariance structure. We scale to deep feed-forward and convolutional architectures. We find that adding low-rank terms to parametrized diagonal covariance does not improve predictive performance except on small networks, but low-rank terms added to a constant diagonal covariance improves performance on small and large-scale network architectures.</p>