Efficient Low Rank Gaussian Variational Inference for Neural Networks

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Marcin Tomczak, Siddharth Swaroop, Richard Turner


Bayesian neural networks are enjoying a renaissance driven in part by recent advances in variational inference (VI). The most common form of VI employs a fully factorized or mean-field distribution, but this is known to suffer from several pathologies, especially as we expect posterior distributions with highly correlated parameters. Current algorithms that capture these correlations with a Gaussian approximating family are difficult to scale to large models due to computational costs and high variance of gradient updates. By using a new form of the reparametrization trick, we derive a computationally efficient algorithm for performing VI with a Gaussian family with a low-rank plus diagonal covariance structure. We scale to deep feed-forward and convolutional architectures. We find that adding low-rank terms to parametrized diagonal covariance does not improve predictive performance except on small networks, but low-rank terms added to a constant diagonal covariance improves performance on small and large-scale network architectures.